The Mechanics Of Bone Strength - Part 1 - Save Our Bones

Over the past 100 years, scientists who study bone have benefited from amazing technological advances. These new techniques have vastly expanded and improved our ability to observe the behavior of bone under different conditions.

As a result, we now have an incredibly complete and specific understanding of how and why bones become weaker or stronger. The Journal of Musculoskeletal and Neuronal Interaction recently published a comprehensive review of our current understanding of the mechanical basis of bone strength.

This explanation of the mechanical behavior of bone is complex. But it is essential for understanding how we can implement specific scientifically-proven actions to improve the strength and health of our bones. So we're breaking it down into a two-part series of articles.

In Part 1, we'll explain mechanical load, the difference between stress and strain, and how they provide us the with ability to take control of our bone health. In Part 2 we'll look at the sources of strength in the structure and composition of bone, which explains why osteoporosis drugs are ineffective.

Mechanical Load Causes Stress And Strain

Mechanical loading is any physical pressure your bones experience and the impact of that pressure on their structure. It consists of two components: stress and strain.

Stress describes force exerted on bone. It can be caused by muscular contraction, impact loading, and gravitational forces. Every time you move, stop something that was moving, or resist the force of gravity, you’re placing stress on your bones.

Furthermore, stress produces strain. Strain is the physical yield to the pressure caused by stress. It's a structural deformation of bone material. Above a certain threshold, strain can cause damage to bone, usually in the form of microcracks, or in a traumatic case, fracture. But below that threshold, strain doesn't harm bone.

Bone resilience is the capacity of bone to absorb the energy from strain without suffering damage. This is also known as elasticity. We'll talk more about this mechanical quality of bone (and what creates it) in Part 2 of this series.

Strain is important because bones are mechanosensitive, which means that they can feel the physical deformation caused by strain. And when that strain meets certain conditions, the body responds by increasing bone mass.1

If we understand what causes our bones to ramp up the production of new bone mass, then we have an invaluable tool for improving and maintaining our bone health.


Mechanical loading is composed of stress and strain. Stress is a measure of force experienced by bone. Strain is a measure of physical deformation caused by stress. Resilience is the ability of bone to absorb strain without suffering damage. Our bones can sense strain and our bodies respond to certain types of strain by adding bone mass.

About Strain Magnitude

Strain, at its simplest, can be measured by magnitude– how much structural deformation occurs at the site of stress.

Researchers have charted the relationship between strain magnitude and bone adaptation, which includes changes in bone mass. Using this data, they developed the mechanostat theory.

The mechanostat theory observes that there is a minimum effective strain required for bone to maintain its mass. Below that strain, bone degrades. At just the right magnitude of strain, bone maintains its mass. Above that threshold, bone formation occurs for the purpose of increasing bone strength by adding mass.1

However, bone responds not just to a simple magnitude of strain but to a combination of magnitude, rate, frequency, distribution, number of loading cycles, and the rest-recovery period between applications of strain.1

Taken all together, this “strain environment” determines bone adaptation response. Next, we'll look at these other factors and how they impact bone formation.


Strain magnitude is a measure of how much structural deformation occurs. The mechanostat theory observes that there is a minimum effective strain required for bone to maintain its mass. At lower strain bone degrades, and at higher strain, it adds mass. However, magnitude isn't the only measure of strain that impacts the minimum effective strain.

About Strain Frequency

Strain frequency describes how many times per second a particular strain is applied to bone. For example, if you do five squats in one minute, that's a lower frequency than doing ten squats in one minute.

When you increase strain frequency, the threshold between losing and gaining bone mass shifts downward. That reduces the minimum effective strain required to stimulate bone growth.1

As a result, doing a low magnitude activity with high frequency can be just as effective as doing a high magnitude activity at a low frequency. Using the example of squats, if you add weight to your squats you don't have to do as many per minute to get the same effect as doing them more times per minute without adding weight.

Be careful though. High magnitude activities at a high frequency increases the likelihood of damaging bone. Conversely, only low magnitude activities at low frequency will likely result in bone loss since you wouldn't reach the minimum effective strain threshold.

To reach or exceed the minimum effective strain threshold, either the frequency or magnitude of strain must be high.


Strain frequency is the times per second a particular strain is applied to bone. For example, the number of squats you do in a minute is the frequency. When frequency is high, less strain magnitude is required to reach the minimum effective strain for maintaining bone mass.

About Strain Rate And Distribution

In addition to strain magnitude and frequency, a zoomed-in look at strain reveals more factors that influence bone creation.

Strain rate describes the change in magnitude over time within a single movement (strain cycle). Recall that strain is the measurement of structural deformation. When you squat, the strain on your bone is different at different moments during the movement. When you chart the changes in structural deformation from microsecond to microsecond during the squat, the resulting measure is the strain rate.1

Strain distribution describes the difference in strain across the bone itself. Imagine zooming way in on the site of the strain caused by doing a squat. Across the physical area where the strain is occurring, that strain isn't uniform. The difference in strain across that physical area is the strain distribution.1

Studies have found that more bone growth occurs when the rate and distribution of strain are highly variable. One way to increase the strain rate and distribution of an exercise is to perform the movement more quickly.2 To maximize the strain rate and distribution of your squats you would perform a swift downward movement then a swift upward one as opposed to a slow, steady, continuous motion.

Here's how the study authors described what we've learned so far:

“Bone cells therefore optimally respond to the net-effect of loading activity that is dominated by high strains (magnitude or frequency) changing at fast rates while presenting in unusual and unbalanced distributions”1


Strain rate measures the change in strain over the course of a single movement. Strain distribution measures differences in strain across the physical area of bone experiencing strain. High variability of rate and distribution results in optimal bone growth.

About Strain Volume

Strain volume requires us to consider a combination of strain magnitude, rate, and frequency as a singular loading cycle. Strain volume considers how many of the loading cycles occur within a particular period of time– often over the course of a day.

If your loading cycle is doing 10 squats in a minute, then your strain volume is how many times you perform that set of 10 squats within a particular time frame, usually a day. Strain volume is important because it impacts your bones' mechanosensitivity.

Mechanosensitivity is your bones' ability to sense strain. It's impossible to reach the minimum effect strain threshold if your bones can't sense the strain. Increasing strain volume reveals a pattern of diminishing returns.

Essentially, your bones have a limit of how much strain they can sense before they need to rest and reset. That means that once you've maxed out your bones' capacity for sensing strain, further strain won't cause a proportional increase in bone mass.1

Your bones need to rest! They need time to restore their mechanosensitivity following a loading cycle. Fortunately, the rate of recovery starts off very high, then slows over time. So it doesn't take a full day for your bones to regain most of their mechanosensitivity.

In the researchers’ own word:

“In particular, rest periods spanning ~15 seconds to ~4 hours increase bone formation outcomes by ~65% to 100%; whereas no significant advantage is evident beyond ~8 to 10 hours; and ~98% of mechanosensitivity restored ~24 hours post-loading event”1

This means that you can't do a week's worth of bone-targeted exercise all at once and still reap the benefits. Strain volume dictates that you must spread out your bone-building workouts over time to allow your bones to recover their mechanosensitivity.


Strain volume measures how often bones experience a particular loading cycle, like a workout routine. Bones lose their ability to sense strain (their mechanosensitivity) following a loading cycle. They must rest to regain their mechanosensitivity for effective strain to result in bone growth.

What This Means To You

This information allows us to be strategic about our bone-building physical activities. By choosing exercises that provide either a high magnitude of strain or a high frequency of strain, you can exceed the minimum effective strain required to maintain bone mass and stimulate the creation of new bone.

Movements with a high variability of strain rate and distribution also maximize bone growth. Carefully increasing the velocity of the movements in your exercise will help accomplish this goal.

However, there is a limited volume of strain that your bones can take advantage of each day. You must rest between workouts because strain reduces the mechanosensitivity of bone.

This detailed understanding of strain gives us the ability to make smarter and more effective choices about our bone-building exercise routine.

You can get professional guidance to apply this technical knowledge from the Save Institute's online video-workout platform SaveTrainer. There you'll find certified trainers leading bone-targeted exercise routines designed to optimize strain magnitude, frequency, rate, and distribution. Customizable workout plans will help you find a strain volume that makes the most of your bones' mechanosensitivity.

In Part 2 of our series on the mechanical basis of strength, we'll take a close look at the behavior of bone in response to stress and strain, so you’ll have a clear understanding of how to strengthen and build your bones with exercise and other physical activity.




The Top 14 Things You’re Doing That Are Damaging Your Bones... And More!

  • Stop The Bone Thieves! report
  • Email course on how to prevent and reverse bone loss
  • Free vital osteoporosis news and updates.
Get It Free Now

Comments on this article are closed.

  1. David Martin

    Such a beautiful post, thanks for sharing this wonderful post. Can i use protein for strenght?

  2. Susan

    Hello Vivian!
    Love your newsletters and all the important information you share!
    Have you done any research on floor vibration machines? I read the astronauts use these while in space to help them retain bone. I’ve also seen videos touting their benefits!
    Thank you Vivian! Hope you are having a Wonderful day!
    A Big Fan!
    Susan Dvorak

    • Vivian Goldschmidt, MA

      Thanks for your kind words, Susan!

      To answer your question, there’s a lack of research on whole-body vibration, so it’s not confirmed that it provides the same health benefits as exercising.

      Some research does show that whole-body vibration may help improve muscle strength and that when performed correctly and under medical supervision, it can reduce back pain, improve strength and balance, and reduce bone loss.

      However, there are studies that show no bone density improvement in postmenopausal women:

      At the Save Institute, we’re not opposed to Whole Body Vibration Exercises (WBVE), but still, if someone wants to do it, it’s important to eat a pH-balanced diet and include physical activity in their daily routine. Weight-bearing, aerobic, and strength training activities are recommended.

      And because whole-body vibration can be harmful in some situations, we suggest checking with a doctor before using it.

  3. K Gopal Rao

    It strikes me as a layman that muscle may be the limiting factor rather than bone in any exercise. Right or wong, Vivian?

    • Vivian Goldschmidt, MA

      Both muscle and bone are limiting factors. However, in this article, we’re looking at the mechanics of bone strength, so we’re mainly focusing on bones.

  4. Sue Beer

    Interesting that doing squats can have that much effect. When I have done them I usually hold 5 lb. weights. I know everyone is different, but how much weight is considered “safe”?

    • Save Institute Customer Support

      Sue, the weight varies from person to person, because it depends on your fitness level. So you can start with lighter weights, as you’re doing now, and when you notice that the squat (or any other move using weights, for that matter) becomes effortless, you can increase the weight slightly. So you’d go from 5 lbs. to 7.5 lbs. at that point.

      • Sue Beer

        Thank you. It’s what I figured. We had been going to the gym religiously and did squats with 20 lb weights. Haven’t been back because of Covid and that much older, I didn’t want to overdo it. Will increase weights now.

  5. Marlene

    Hello Vivian,
    An excellent article ! Thank you very much for sharing
    this valuable information.

    Have a wonderful day.

    • Vivian Goldschmidt, MA

      You’re very welcome, Marlene!

  6. Barbara

    Good article! So does the Densercise program meet the criteria for the type of loading described in the article?

    • Save Institute Customer Support

      Barbara, several components of Densercise include these features. For example, you can manage your strain frequency because Densercise doesn’t give you the number of repetitions required, but instead, it gives you a time frame for each move.

  7. Laura Beal

    Interesting information, but I see no mention of the factor that age plays in this process? Does bone formation vary with age?

    • Vivian Goldschmidt, MA

      Bone formation can be affected by aging if we do not address the changes that it causes. For example, a younger person has more efficient kidney function than an older person. Hence the importance of maintaining a pH-balanced diet as we age.

  8. Lynda Armstrong

    Thank you for all your help and knowledge. In Canada most doctors simply hand you a drug to take and tell you not to fall. The support here is nonexistent and I feel so lucky to have found your Save Institute. Again, thank you so much.

    • Vivian Goldschmidt, MA

      It’s my pleasure, Lynda!

  9. Marty McIntyre

    Explaining the process of building bones in this way (like a physical science problem) FINALLY makes sense to me.

    • Vivian Goldschmidt, MA

      It doesn’t cease to amaze me how science can provide us with an in-depth explanation of physiological processes. I’m glad you enjoyed the article, Marty!

  10. Irene Turner

    Very good articles and understandable Thank you

    • Vivian Goldschmidt, MA

      You’re welcome, Irene!

Get Started With Your FREE
Natural Bone Building Kit.

Get a free copy of our ‘Stop The Bone Thieves’ eBook, exclusive content that you can’t find anywhere else, plus vital osteoporosis news and updates.

Get It Free

Get Your Free Bone-Building Kit


‘Stop The Bone Thieves’ guide, exclusive info, plus vital osteoporosis news and updates.